A Riemann hypothesis analogue for invariant rings
نویسندگان
چکیده
منابع مشابه
An abundance of invariant polynomials satisfying the Riemann hypothesis
In 1999, Iwan Duursma defined the zeta function for a linear code as a generating function of its Hamming weight enumerator. It can also be defined for other homogeneous polynomials not corresponding to existing codes. If the homogeneous polynomial is invariant under the MacWilliams transform, then its zeta function satisfies a functional equation and we can formulate an analogue of the Riemann...
متن کاملA proof for the Riemann hypothesis
The Riemann zeta function ζ(s) is defined by ζ(s) = ∑∞ n=1 1 ns for R(s) > 1 and can be extended to a regular function on the whole complex plane deleting its unique pole at s = 1. The Riemann hypothesis is a conjecture made by Riemann in 1859 asserting that all non-trivial zeros for ζ(s) lie on the line R(s) = 12 , which is equivalent to the prime number theorem in the form of π(x)−Li(x) = O(x...
متن کاملRiemann Hypothesis for function fields
1 1 Preliminaries 1 1.1 Function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Primes and Divisors . . . . . . . . . . . . . . . . . . . . 2 1.2.2 The Picard Group . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Notation . . . . ...
متن کاملA Strategy for Proving Riemann Hypothesis
A strategy for proving Riemann hypothesis is suggested. The vanishing of the Rieman Zeta reduces to an orthogonality condition for the eigenfunctions of a non-Hermitian operator D+ having the zeros of Riemann Zeta as its eigenvalues. The construction of D+ is inspired by the conviction that Riemann Zeta is associated with a physical system allowing conformal transformations as its symmetries. T...
متن کاملGeneralized Riemann Hypothesis
(Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most important unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems ([BRW], [SA])...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2007
ISSN: 0012-365X
DOI: 10.1016/j.disc.2006.11.016